Course Syllabus

Cardiac & Vascular Interventional Imaging (Angiography)

Vascular Interventional Stream
Section A: Angiographic Equipment

TOPICS:

General

- Understand the French sizing system

Sheaths

- Understand vascular sheaths
 - General design and purpose
 - Use of long Sheaths
 - Purpose of Break-Away (peel apart) sheaths

Catheters

- Understand the terms
 - Pushability
 - Crossability
 - Torque
 - Steerability
- Compare and contrast the shape, characteristics and use of the following flush catheters
 - Pigtail
 - Contra/VCF/ Omni Flush
- Understand the general shape of the following catheters
 - Hinck
 - Cobra
 - Rim
 - Simmonds 1&2
- Understand the common uses of the following catheters (principle anatomical engagements)
 - Cobra
 - Rim
 - Simmonds 1&2
 - Headhunter
- Understand the design and primary uses of Glide Catheters
- Understand the following characteristics of Guide Catheters
 - Sizing
 - Indications for use
 - How they differ from a standard diagnostic catheter
- Understand the general definition of a micro-catheter and describe its applications and major benefits
Guide Wires

- J-Wires vs. straight wires
 - Indications for use
 - Advantages and disadvantages
- Understand the design and general use of Glide Wires
- Compare and contrast the following wire-based delivery systems
 - 0.035 vs 0.018 vs 0.014
 - Understand the primary uses (and limits) of each system
- Know the primary uses, general length, and disadvantages associated with the use of Exchange Wires
 - Standard exchange
 - Stiff exchange
 - Amplatz
 - Lunderquist

Balloons

- Understand the term balloon compliance
 - Compare the uses of Compliant and Non-Compliant Balloons
- Understand the following angiography balloon terms
 - Rated Burst Pressure
 - Nominal Pressure
 - Difference between circumferential and longitudinal balloon rupture
- Understand the type and use of Occlusion Balloons
 - In the following regions: Neuro, Gastric and Aortic
 - Understand the principle uses of the CODA balloon
- Specialist balloons
 - Cutting balloons - Describe the design and indications of cutting balloon use
 - Drug Eluting Balloons – describe their uses and the drugs routinely applied

Stents

- Compare and contrast Self Expanding and Balloon Expandable Stents
 - Delivery mechanisms
 - Advantages vs. disadvantages (including radial strength characteristics)
- Understand the design and general uses of Covered Stents
- Understand Flow Diverters
 - Indications
 - Design characteristics and how they work

Embolics

- Understand the design, use and function of embolising coils
 - Coil sizing
 - 3D (framing) vs. tornado vs. spiral
 - Fibred
- Detachable vs. pushable coils
• List indications for both
• Understand the characteristics and use of Amplatzer devices
 o Cardiac vs. vascular interventional applications
• Understand the characteristics and use of the following liquid embolics
 o Onyx
 o Histoacryl
 o Lipiodol
• Understand particulate embolics
 o Principle use
 o Common angiographic applications
• Understand Gelfoam
 o Composition
 o Angiographic applications

Thrombectomy

• Understand chemical thrombectomy
 o Angiographic applications
 o Thrombolytic drugs used
 o Catheters employed
 o Relationship to mechanical thrombectomy
• Understand mechanical thrombectomy
 o Angiographic applications
 o Understand the currently available devices and how they operate
 ▪ Rotational atherectomy catheters
 ▪ Tretratola device
 ▪ Solitaire device
 ▪ Angiojet (rheolytic) system
Section B: Angiographic Anatomy, Pathophysiology & Pharmacology

TOPICS:

- Identify the macroscopic and microscopic structure of arteries and veins
- Understand the principles of Virchow’s triad
- List pathological processes that may result in arterial narrowing
 - Intrinsic vs. extrinsic
 - Acute
 - Chronic
- List pathological processes that may result in venous narrowing
 - Intrinsic vs. extrinsic
 - Acute
 - Chronic
- List pathological processes that result in vascular occlusion
 - Acute
 - Chronic
- Understand the pathological process behind aneurysm development
 - Fusiform vs. saccular vs. mycotic
 - True vs. false (pseudo) aneurysm
- Understand and compare the following terms
 - Arterio-venous malformation
 - Nidus
 - Arterio-venous fistula
 - Pathological
 - Surgically created
 - Angiogenesis
- Define hepatic-portal venous pressure gradient and its clinical significance in portal hypertension
 - Understand clinically relevant pressure gradient values

Arterial Anatomy - Principles

- Describe the composition of the femoral triangle
- List the arterial supply to the stomach indicating which portion of the stomach is supplied by each vessel
- List arterial supply to duodenum and pancreas
 - Pancreatic head supply vs. pancreatic tail supply
- List arterial supply to the lower gastrointestinal tract indicating which portion of the bowel is supplied by each vessel
- List the vertebral levels of the following
 - Coeliac trunk
 - Superior mesenteric artery (SMA)
o Right and left renal artery
o Inferior mesenteric artery (IMA)
o Aortic bifurcation
o Iliac venous confluence
• List structures passing through each diaphragmatic hiatus
 o Include vertebral level for each one
• Describe the arterial supply to the brain
• List all major intracranial arterial vessels
 o Cerebral branches
 o Cerebellar branches
• List the arteries of the aortic arch (the great vessels), from proximal to distal
 o Brachiocephalic/Subclavian artery and subsidiary branches
 o Carotid arteries and its subsidiaries

Bloodwork

Clotting Factors
• Understand the clinical relevance of a low haemoglobin level, and its primary causes
• Understand an International Normalised Ratio (INR) test and when it should be performed
• Discuss the functions of platelets during vessel haemostasis
 o Understand the implications of a low platelet count
• Understand an Activated Clotting time (ACT) test and when it should be performed

Renal Function
• Understand the clinical importance of Glomerular Filtration Rate (GFR) tests in angiography, and know the levels for safe operation
• Understand Creatinine: What it is, how it is produced, and how to manage high levels prior to angiography
• Understand Urea: What it is, how it is excreted, and the clinical relevance of low levels

Drugs

• Lignocaine
 o Drug class
 o Common dosing
 o Effect of combining with Epinephrine
• Fentanyl
 o Drug class
 o Primary Uses
 o Common dosing
• Midazolam
 o Drug class
 o Primary Uses
 o Common dosing
• Heparin
 o Drug class
Primary angiographic uses
- GTN
 - Discuss the primary angiographic use
 - Mechanism of action
- Papaverine
 - Drug class
 - Primary functions
 - Angiographic applications
- Verapamil and Nimodopine
 - Drug class
 - Mechanism of action
 - Angiographic applications
- Urokinase
 - Drug class
 - Angiographic applications
Section C: Angiographic Physics

Radiation Biology & Safety

- Understand what contributes to **patient dose** in fluoroscopic procedures
 - Types of photons (transmitted, scattered and absorbed)
 - Common methods for reducing these doses
- Understand what contributes to **operator dose** in fluoroscopic procedures
 - Areas of highest scatter dose
 - Types of photons (transmitted, scattered and absorbed)
 - Common methods for reducing these doses
- Discuss the importance and uses of Diagnostic Reference Levels (DRL’s) in angiography
 - Understand how DRL values are arrived at
- Compare and contrast acute and chronic radiation injury
 - Define each type
 - Common forms these injuries may take
 - Trigger levels

Radiation Dose Metrics

- Describe the location and purpose of the Interventional Reference Point (IRP)
 - Understand the implications of changing table height on the resultant radiation dose measurements
- Understand Dose Area Product (DAP)
 - What it is
 - Where it is measured
 - Clinical relevance
- Discuss Air Kerma (AK)
 - What it is
 - Clinical relevance, and how it differs from the Surface Entrance Dose
 - Understand how to determine the maximum skin dose (single region) where multiple projections have been used

Radiation Protection

- Know the Australian Standards for
 - Heavy lead gowns
 - Annual absorbed dose limits

Imaging Physics

- Understand the effects of a changing field of view (FOV) on patient dose
 - Collimation vs. magnification
- List image magnification changes with changes to the following
 - Source-to-image distance
o Source-to-object distance
o Object-to-image distance

• Know the common focal spot sizes in use in angiography, and understand
 o The effect on image resolution
 o The effect on heat loading

• Understand the effects of changing matrix size on image resolution
• Understand what the Detective Quantum Efficiency (DQE) says about an angiography system. What is its relevance?

• Vessel calibration methods
 o Understand the limitations to each method (foreshortening, magnification, errors induced when calibrating from small distances)
 ▪ Measuring catheters
 ▪ Catheter/sheath width calibration
 ▪ Automatic (magnification factor) calibration
 ▪ Ruler calibration (top of table, or on top of patient)

Bi-Plane Angiography

• List advantages of bi-planar angiographic systems
• List disadvantages of bi-planar angiographic systems
• List angiographic procedures from which bi-planar imaging provides significant benefits

Digital Subtraction Techniques

• List indications for x-ray (acquisition) delays vs. Injection delays
• List approximate acquisition rates for the following common protocols
 o Arch/Thoracic aorta
 o Abdominal aorta
 o Common femoral artery
 o Below knee imaging (tibial arteries)
• Compare and contrast Image/mask averaging and Maximum Opacification techniques
 o Indications for use
 o Effect on signal-to-noise ratio (SNR)
• Compare and contrast Image Overlay and Roadmap techniques
 o Discuss when they should and should not be used

Contrast Injection Principles

• Understand Poiseuille’s law
 o Factors affecting the pressure of injection
 o Maximising injection flow rates
• Understand the use of angiographic powered injectors and what each parameter controls
 o Injection rate
 o Injection volume
 o Injection delay
Rotational Angiography

- List the advantages and disadvantages of rotational angiography
- Understand the technique differences between 3D rotational angiography (3DRA) and 3D digital subtraction angiography (3DDSA)
 - Acquisition parameters
 - Injection dilution
 - Injection volume
- Describe the difference between the following (3DRA/3D DSA) standard image reconstruction modes
 - Volume rendered (VR)
 - Maximum intensity projections (MIP)
Section D: Fundamental vascular angiographic and interventional procedures

General Principles

- Understand why patients must remain still during procedures and the methods used to achieve this
- Understand why monitoring a patient’s blood pressure, oxygen saturation, heart rate and respiratory rate during a procedure is important
- Understand the risks of pressure injury and for the patient and ways to prevent this

Sterile Technique

- Understand basic principles of sterile technique as they relate to the procedure, staff, and patient
 - The use of sterile gowns/gloves/drapes
 - How to dispense sterile equipment equipment/fluids into the sterile field
 - Cleaning preparation of the access site
 - Use of personal protective equipment in the procedure room
- Understand basic principles of sterile technique as they relate to the x-ray equipment
 - Avoiding contamination of the sterile field

Vascular Access

- List all steps (in order) of the modified Seldinger technique
 - Indicate equipment required at each stage
- Compare and contrast brachial artery vs. common femoral arterial access
 - Indications
 - Contraindications
- List standard and alternative endovascular approaches to venography

Procedure Risks & Complications

- List potential complications related to arterial access
- List contraindications to performing angiographic procedures
- List major and minor complications related to the injection of iodinated contrast media
- List potential procedural complications

Fluoroscopic Intervention

- Understand nephrostomy tube insertion
 - Indications
 - Procedure requirements
 - Patient positioning
- **Equipment required**
 - Understand ureteric stent insertion (performed in radiology)
 - **Indications**
 - **Procedure requirements**
 - Patient positioning
 - Equipment required
 - Understand percutaneous trans-hepatic cholangiography (PTC/PTHC)
 - **Indications**
 - Internal/external biliary drainage
 - Biliary stenting
 - Rendezvous procedure
 - **Procedure requirements**
 - Patient positioning
 - Equipment required
 - Understand endoscopic retrograde cholangio-pancreatography (ERCP)
 - **Indications**
 - **Procedure requirements**
 - Patient positioning
 - Equipment required
 - Imaging requirements
 - **ERCP – Intervention**
 - Describe biliary sphincterotomy
 - Indications for plastic vs. metal stents
 - Methods for stone extraction
 - Understand radiologically inserted gastrostomy tubes (RIG)
 - **Indications**
 - **Procedure requirements**
 - Imaging requirements
 - Equipment required

Venous Interventional Procedures

- Understand peripherally inserted central catheters (PICC)
 - **Indications**
 - **Procedure**
 - Equipment required
 - Imaging requirements
 - Ideal catheter tip placement
- Understand the differences between tunnelled and non-tunnelled central venous catheters
 - Clinical situations in which they are employed
 - List the advantages and disadvantages of internal jugular vs. subclavian venous puncture
- Understand the indications and differences between the following **tunnelled** central venous catheters, defining ideal tip position
 - Permcath, Hickmans, Portacath
Thoracic Angiography

- For arch arteriography list
 - Indications
 - Standard projection
 - Catheter used
- List indications for performing the following selective thoracic angiographic procedures
 - Bronchial arteriography
 - Spinal arteriography
 - Intercostal arteriography
- List indications for performing pulmonary angiography
 - Acute vs. Chronic conditions

Abdominal Angiography

- Understand infra-renal endovascular aortic repair (EVAR) procedures
 - Indications
 - Equipment
 - Describe the composition of stents used in EVAR procedures
 - Wires used
 - Catheters used
- Understand the categorisation of endoleaks
 - List all 5 types of endoleak
 - List treatment options for type 2 endoleak
- In the treatment of hepatic tumours
 - Differentiate between Trans-arterial chemo-embolisation (TACE) and selective internal radiation therapy (SIRT) procedures
 - List indications
 - TACE infusion/embolisation rationale
- Understand the application of endovascular techniques in the embolisation of visceral bleeding, listing the choice of embolic in each case
 - Renal
 - Hepatic
 - Splenic
 - Rationale of distal vs. proximal splenic embolisation
 - Lower gastrointestinal
- Understand uterine artery embolization (UAE) procedures
 - Indications
 - Embolics employed
- Understand procedures for infra-renal inferior vena cava (IVC) filter insertion
 - Indications
 - Vascular approach
 - Target zone for IVC filter placement
 - Maximum IVC widths for insertion
- Understand procedures for infra-renal inferior vena cava (IVC) retrieval
 - Indications
o Retrieval methods
 ▪ Vascular approach
 ▪ Snare vs cone retrieval
 o Pre retrieval venography rationale

- Understand gonadal vein embolisation procedures
 o Indications
 o Venous anatomy
 o Embolics employed

Peripheral Angiography

- List indications for performing diagnostic lower limb angiography
- Define ankle-brachial index (ABI)
- For peripheral angiography understand clinical scenarios for utilisation of a retrograde approach
 o Advantages and disadvantages
 o Describe the up-and-over technique
- For peripheral angiography understand clinical scenarios for utilisation of an antegrade approach
 o Advantages and disadvantages
- List common projections required to image the following
 o Common iliac bifurcation
 o Common femoral bifurcation
- Understand the application of CO2 in peripheral angiographic imaging
 o Indications and contraindications
 o Angiographic technique variations when imaging with CO2 vs. iodinated contrast
 ▪ Table tilt
 ▪ Post processing techniques

Cerebral Angiography

- List indications for performing diagnostic cerebral angiography
- For intracranial imaging list advantages/disadvantages of catheter angiography compared to computed tomographic angiography (CTA)
- Understand baseline neurovascular projections, indicating the alignment of bony landmarks and area of interest
 o Intracranial internal carotid artery (ICA)
 ▪ Posterior-Anterior (PA)
 ▪ Lateral
 ▪ Trans-orbital oblique
 o Intracranial vertebral artery
 ▪ Posterior-Anterior (PA)
 ▪ Lateral
- Understand the intracranial vascular anatomy best demonstrated for each standard neuroangiographic projection (as listed above)
 o Arterial
 ▪ Anterior, middle and posterior cerebral vessels
 ▪ Basilar artery
• Ophthalmic artery
 o Venous
 ▪ Intracranial sinuses
• Understand endovascular treatment options for wide necked vs. narrow necked aneurysms
 o Definition of wide vs. narrow necked aneurysms
 o Treatment options
 ▪ Coiling
 ▪ Balloon/Stent assisted coiling
 ▪ Flow diversion
• Understand the treatment options for embolic stroke
 o Intravenous therapy
 o Endovascular treatment
 ▪ Mechanical and suction thrombectomy systems
• Understand the endovascular treatment options for cerebral vasospasm
 o Equipment required
 o Drugs employed
 o Indications for angioplasty
• List indications for the following neuro-vascular procedures
 o (Inferior) petrosal sinus sampling
 o Balloon occlusion testing
 o Maxillary artery embolisation
Section E: Angiographic/Fluoroscopic Image Labelling

List and/or Label the Following Anatomical Structures:

Head & Neck
- Extracranial arterial supply
 - Common carotid bifurcation
 - Internal carotid
 - External carotid
 - Vertebral
- Intracranial arterial supply
 - Anterior cerebral artery
 - Middle cerebral artery
 - Posterior cerebral artery
 - Superior cerebellar artery
 - Anterior-inferior cerebellar artery
 - Posterior-inferior cerebellar artery
- Intracranial venous drainage
 - Superior sagittal sinus
 - Inferior sagittal sinus
 - Transverse sinus
 - Sigmoid sinus
 - Internal cerebral veins
 - Great vein of Galen
 - Cavernous sinus
 - Inferior petrosal sinuses

Thoracic
- Aortic arch and great vessels
- Thoracic aortic branches
 - Bronchial
 - Intercostal
- Central venous
 - Superior vena cava
 - Inferior vena cava
 - Right atrium
 - Main pulmonary trunk

Abdominal
- Coeliac arterial branches
 - Common hepatic artery
 - Hepatic proper
 - Gastroduodenal artery
 - Superior pancreato-duodenal artery
- Right gastroepiploic artery
- Right gastric artery
 - Splenic artery
 - Dorsal pancreatic/Pancreata magna
 - Left Gastric
- Superior and Inferior mesenteric arteriography
 - Right colic
 - Middle colic
 - Left colic
 - Sigmoid
 - Superior Rectal
- Abdominal wall arterial supply
 - Parietal arteries
 - Inferior phrenic
 - Lumbar
 - Median sacral
- Pelvic Arteriography
 - Common iliac
 - Internal iliac branches
 - Anterior trunk
 - Ilio-lumbar
 - Gluteal branches
 - Posterior trunk
 - Obturator
 - Vesicle
 - Uterine
 - Internal pudendal
 - External Iliac
 - Deep iliac circumflex
 - Inferior epigastric
- Central venous
 - Inferior vena cava
 - Renal vein
 - Hepatic vein
- Portal venous
 - Superior mesenteric vein
 - Splenic vein
 - Inferior mesenteric vein
- Cholangiography
 - Hepatic ducts
 - Cystic duct
 - Common bile duct
 - Pancreatic duct
Peripheral

- Upper arm arteriography
 o Subclavian artery and branches
 ▪ Vertebral artery
 ▪ Thyrocervical trunk
 ▪ Costocervical trunk
 ▪ Internal thoracic (mammary) artery
 o Axillary artery
 o Brachial artery
 o Radial, ulnar and interosseous arteries
 o Deep and superficial palmar arches
 o Proximal brachial artery

- Lower limb arteriography
 o Common femoral arterial bifurcation
 o Superficial and Deep (profunda) femoral
 o Popliteal
 o Genicular arteries
 o Anterior and Posterior tibial arteries
 o Peroneal artery
 o Median and lateral plantar arch
 o Dorsalis pedis